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LETTER TO THE EDITOR 

Random matrix models with additional interactions 

K A Muttalib 
Department of Physics. University of Florida, Gainesville, FL 32611, USA 

Received 12 December 1994 

Abstract It has been argued that. despite remarkable success. existing random matrix theories 
are not adequate al describing disordered conduaors in he metallic regime, due to the presence 
of certain hvo-body interactions in the effective Hamiltonian for the eigenvalues, in addition 
to the standard logarithmic interaction that zises entirely fram symmetry considerations. We 
present a new method that allows exact solution of random matrix models with such additional 
tw*body interactions. This should broaden the scope of random matrix models in general. 

From a phenomenological point of view, random matrix models have proved very useful 
in our understanding of a wide variety of physical systems including complex nuclei 111, 
disordered metals [Z] and chaotic systems [3]. Although the physical systems are very 
diverse, the local statistical properties of the characteristic levels of these systems in 
the b u k  of the spectrum turn out to be universal, similar to the well known universal 
properties of the distribution of eigenvalues of random matrices as proposed originally by 
Wigner [4]. Recently the models have been generalized to include transitions in spectral 
statistics [SI that are characteristic of metal-insulator or chaotic-regular transitions in finite 
systems. This has opened up the possibility of describing such transitions in this powerful 
mathematical framework, allowing exact evalnation of correlation functions. However, on 
one hand the statistical properties of numerically solved microscopic models with random 
disorder describing mesoscopic conductors show remarkable agreement with predictions of 
the generalized random matrix theory over a wide range of disorder [S, 61; on the other hand 
there are indications that the appropriate random matrix model for disordered conductor 
is, while highly accurate, not exact in the metallic regime [7,8]. An exact solution [9] 
for the Fokker-Planck equation describing the probability distribution of the transmission 
coefficients [lo] shows that the resulting matrix model should include a small correction 
term which apparently destroys the solvability of the model. This correction is responsible 
for a very small correction to the magnitude of the universal conductance fluctuation, but at 
the same time this also resolves a small discrepancy between the random mabix result and 
the perturbative result from microscopic theory [ll]. While it is not clear how important 
the correction term is. e.g. to the question of transition from~metal to insulator, the fact that 
the correction exactly reproduces the result of the microscopic theory makes it qualitatively 
non-negligible. It is therefore believed that, despite remarkable success, the usefulness of 
the phenomenological random matrix approach for the problem of disordered conductors 
will he severely restricted if such corrections cannot be accommodated within a solvable 
framework. 

In this work we present a new method to accommodate certain types of corrections 
to the standard random matrix models. These corrections are similar to those arising in 
the problem of disordered conductors. The method generalizes the approach based on the 
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theory of orthogonal polynomials and allows exact solutions for physically relevant models 
in terms of known functions. 

The basic ansatz of the random matrix theory is that for a physical system described by 
an N x N matrix X with eigenvalues x,, n = 1, . . . , N, the joint probabilty distribution (JPD) 
for the ensemble of all random X matrices consistent with given symmetries (hermiticity, 
time reversal etc) and subject to some physical constraint (e.g. given average density of 
eigenvalues) can be written quite generally in the form [4] 

m<n " 
Here 01 is a symmetry parameter and is equal to 1, 2 or 4 for orthogonal, unitary and 
symplectic symmetries respectively. For example, for disordered conductors, a good ansatz 
[12] is to use the 2N x 2N matrix X = $[TTt  + (TTt)-' - 211, where T is the transfer 
matrix characterizing the conductor aid I is the unit matrix. The doubly degenerate real 
eigenvalues x are restricted between 0 and cc by current conservation and directly gives 
the conductance g = E,, l/(l + x,). It is useful to describe the probability distribution 
in terms of an effective 'Hamiltonian', H, of the eigenvalues defined by P = exp(-aH), 
where 

m c n  

The repulsive logarithmic 'interaction' term arises from symmetry considerations alone, 
while the confining 'singleparticle potential' V ( x )  is the Lagrange multiplier function 
which takes care of ihe physical constraint [13] mentioned above and. in general, depends 
on various physical parameters. For example V ( x )  = t x ,  where f depends on disorder, 
describes the disordered metal quite well [2, 141. 

The solvability of the model has so far relied crucially on the fact that the only interacting 
term in (2) is the logarithmic repulsion which arises entirely from symmetry considerations: 
in other words any relevant physical constraint must give rise to only a single-particle 
potential. Given this restriction, the universal distributions for nearest-neighbour spacing 
or the so-called As statistics in the bulk of the spectrum, which we will generically call 
the Wigner distributions [4], follow from the above JPD when V ( x )  is taken to be linear or 
quadratic in x .  In these cases the potential is strong enough to overcome the logarithmic 
repulsion and the density of levels scale with the number of levels. When V ( x )  is not 
strong enough, the universality breaks d,own; in particular for V ( x )  -+ [ln(x)J2 for large x, 
there is a transition from the Wigner distribution to an uncorrelated Poisson distribution as 
a function of a parameter [5 ] .  Nevertheless the model remains exactly solvable. 

The first hint that a disordered conductor in the metallic regime in higher than one 
dimension may not be exactly described by a simple logarithmic interaction of the above 
form came from attempts to check detailed predictions of random matrix results numerically 
[7]: but the nature of the conection needed came from exact solutions [9] of the Fokker- 
Planck equation satisfied by the transmission eigenvalues in the metallic regime [IO]. The 
solution showed, when mapped to a random matrix Hamiltonian, that the two-particle 
interaction part has the form 

For x << 1, this reduces to the standard logarithmic repulsion, but for x Es 1 the additional 
term makes it non-logarithmic. The difference is enough to change the variance of 
conductance from the random matrix result to the microscopic perturbative result &. 
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It is important to establish how significant this small difference is as far as the qualitative 
statistical properties are concerned. Although the existence of such additional two-body 
terms can be understood as arising from some physical constraint that need not be of a 
singleparticle form, the question of if or how it affects the known random matrix results 
could not be addressed within the current random matrix framework because any such 
additional two-body interaction destroys, the existing criterion for solvability and, therefore, 
the usefulness of, the model. 

We will show below that, with an additional two-body interaction given by a 
simplification of equation (3), it is still possible to solve the model exactly but now using a 
new method. While the models constructed are appropriate for disordered conductors, the 
solvabilityof such models broadens the scope of random matrix theory in general. 

As a first step towards constructing a model that can be solved exactly, and is close 
to a physical model, we approximate the arcsinh function in equation (3) by a polynomial 
s&), of degree k; in the metallic regime where model (3) is valid this should give a 
good approximation. For simplicity and purpose of illustration we will discuss the case 
s&x) = x k  in detail. We will indicate at the end  how^ the method can, in principle, be 
generalized to arbiwiuy polynomials. 

We will, therefore, consider in detail the model described by an additional two-body 
interaction of the form ln(xk -xi), which is equivalent to a IPD of the form 
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~ ( x l ,  ..., x N ) =  ~ ( x , - ~ , ) ( x ~ - x ~ ) n e - " ( ~ " )  (4) 
m <n " '  

where k is a positive integer. Note that for k = 1 the model reduces to the standard unitary 
random matrix ensemble. An exact solution of this model should allow us to understand at 
least the qualitative effects of the additional two-body corrections. 

For the standard logarithmic interaction part we follow the method of orthogonal 
polynomials [4] and write the product of the differences nm,,(xm -x,J as a Vandermonde 
determinant for which the j th  column has elements x i - ' ,  . . . , x N  , j viuying 
from 1 to N .  The determinant remains invariant if we add some linear combination 
of the other columns with lower powers~of the n's; the new jth column has elements 
+I(xI), q - l ( x * ) ,  . . . , + I ( x N ) ,  where q ( x )  = C$bjlx' is a polynomial in x, of 
degree j ;  the coefficients b will depend on the choice of the single-particle potential 
V as we will show later. In a similar way, we write the correction terk f lm,Jxk - 
x:) as a second Vandermonde determinant, for which the j th  column has elements 
.~j-~(x~), Z ~ - ] ( X * ) ,  . . . , ~ j - l ( x N ) ,  where z~(x) = C;=,,cjlxk' is now a polynomial in xk, 
of degree j ;  the coefficients c will be determined from the choice of V .  We now multiply 
the ith column of each determinant by exp[-V(xi)/2], and interchange rows and columns 
of the second determinant. Equation 14) can then be written as the product of the two 
determinants, in the form 

j - 1  

P(xi , : . . , X N )  = CN det K(Xi ,  X j )  , (5) 

~ ( x ; , x j )  =.exp [ -A(v(xi)  + ~ ( i j ) ) ]  E(x; )z1(x j ) .  (6) 

The reason for writing the JPD as a determinant is the following: our ability to evaluate the 
n-point correlation function defined by 

where CN is the normalization constant, and 
N-1 

l=O 

Rn(X,. . . . , X")  =~ N !  / . . ./ dx,+l.. . ~ X N P N ( X I . .  . . , X N )  U) ( N  - n)! 
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depends on our ability to integrate the JPD over arbitrary number of variables. These integrals 
can be done in a very simple way [4] if the JPD can be expressed as a determinant 'as in 
equation (S), providing the following two conditions are satisfied 

/" K ( x ,  x )  dp(x) = constant and '. 1 K ( x ,  y)K(y, z) dp(y) = K ( x ,  z) 

' .  s 

(8) 

where d p  is a suitable measure. This is where the restriction of the standard logarithmic 
interaction, equivalent to the case k = ~ l ,  comes in. For k = 1, the polynomial Z(x) is the 
same as Y(x), and they can be chosen such that they form an orthdnormal set p(x)  with 
respect to the measure exp[-V(x)]dx, i.e. 

. 

p,(x)p.(x)e-"(')dx = &. (9) 

Then the above two conditions in (8) follow from the orthogonality and normalizability of 
the polynomials., The additional two-body interaction forces the polynomials to be distinct, 
destroying the orthogonality. We will now show that even for distinct polynomials Y ( x )  and 
Z(x),  the two conditions in (8) can be satisfied under certain conditions making it possible 
to obtain exact solutions for the correlation functions for these generalized models. 

Let us choose the coefficients b and c in such a way that the polynomials Y and Z 
satisfy the following: 

Yn(.x)x'je-"(') dx = 0 j = 0, 1 , . . . , n - I s 

It can then be shown [ 151 that the two polynomials form a 'biorthogonal' pair, defined by 

e-v(x'Yn(x)z,(x)dx = g,s,,,,,. (11) s 
We will always choose an overall multiplicative factor such that g. = 1, i.e. the polynomials 
are normalized. Clearly the two conditions in (8) are satisfied again: 

where we have used the normalization,'and 

where we have used the biorthogonality of the polynomials. Given these properties, the 
integration over N - n variables &+I, . . . , XN in the JPD can be explicitly carried out [4], 
and we obtain 

R n  = detK(xi, xj)li.j= I..... n (14) 
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where the kernel K(xi,xj) is given by equation (6). In particular, *e density is given by 
K ( x ,  x )  and the two-particle kernel, from which the nearest-neighbour spacing distribution 
or the A i  statistics can be calculated, is given by K ( z ,  y ) K ( y ,  x ) .  

The model is; then, exactly solvable if for a given choice of the single-particle 
potential V ( x )  the corresponding biorthogonal polynomials can be obtained. The physically 
interesting model that already gives a very good description of the metallic regime of a 
disordered conductor in the k = 1 limit is given by V ( x )  = x ,  0 < x < 00. The model, 
is exactly solvable in terms of Laguerre polynomials.~ For'arbihaq k ,  the corresponding 
biorthogonal polynomials have been explicitly calculated by Konhauser 1161. (For the 
simplest non-trivial case k = 2, these are the polynomials introduced by Spencer and 
Fano 1171 to study penetration of matter by gamma rays; and studied later by Preiser [18].) 
Therefore using the new method the exact solution can be immediately written down in terms 
of these Konhauser biorthogonal polynomials. It has been argued [14] that an appropriate 
generalization for all disorder, in the k = 1 limit, is given by the choice 

' m~ 

~ ( x ;  q)  = C~n[l+ (1 - q)q'x] o < q i 1. (15) 

As q + 1-, V ( x )  + x ,  and one recovers the metallic regime, while increasing disorder 
corresponds, to decreasing q. This model, is exactly solvable in terms of the q-Laguerre 
polynomials. For arbitrary k,  again the corresponding biorthogonal polynomials are 
explicitly known 1191 and the exact solution can be written' down in terms of these '4- 
Konhauser' biorthogong polynomials. The detailed properties of these solutions are under 
investigation. 

n=O 

It is also possible to consider a more general form of the JPD given by 

~ ( x l ,  ..., x N )  = n [ r ( x i )  - r ( x n ) ] [ s ( x m )  - s ( x , ) ~ n e - " ( ~ ~ )  (16) 
m c n  

where r ( x )  is a polynomial of degree h and s ( x )  is a polynomial of degree k .  Defining Y 
and 2 as polynomials in r ( x )  and s ( x )  respectively, the above-method should be applicable 
if conditions (10) afe replaced by [I51 

# O  j = n .  

The case considered before is a special case where r ( x )  = x and s ( x )  = x K .  Note that 
writing r(xn)  - r (xm)  = (x,  - xm)r(xm,  x.) and s(xn)  - s(xm) = (x. - xm)s(xm, xJ, we 
can write the JPD in the form 

which may allow more physically interesting models to be solved exactly, if the 
corresponding biorthogonal polynomials are known. 

In summary, we present a new method to accommodate certain two-body interactions 
in random matrix models, particularly appropriate for the problem of transport in disordered 
conductors. We show that correlation functions can be written down explicitly in terms of 
known biorthogonal polynomials. The approach should broaden the scope of random matrix 
models in general. 
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I am grateful to Mourad Ismail for many discussions and, in particular, for bringing [ 191 to 
my attention. 
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